## Analysis of High Energy Starting Events with the KM3NeT/ARCA detector

K. Pikounis, E. Tzamariudaki, C. Markou on behalf of KM3NeT VLVnT 2018, Dubna, Russia 02-04/10/2018

AT STORE

**KM3NeT** 



#### Distributed large scale infrastructure housing the next generation neutrino detectors in the depths of the Mediterranean Sea



talk by P. Coyle

16 countries 40 institutes 220 scientists

Astroparticle **Research with Cosmics in the** Abyss (ARCA)

> High energy neutrino astrophysics

astrophysics

03/10/2018

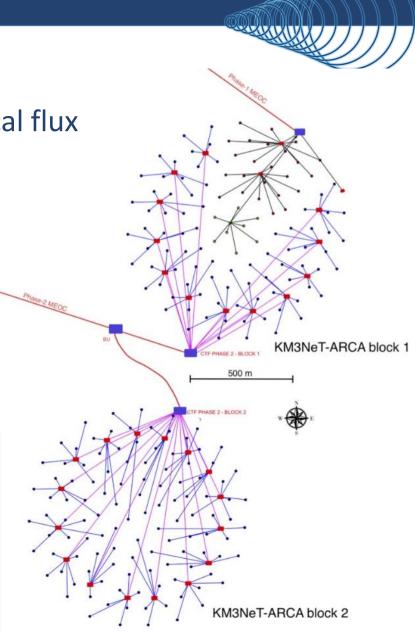
hierarchy

Oscillation

### KM3NeT/ARCA telescope

#### **ARCA Telescope:**

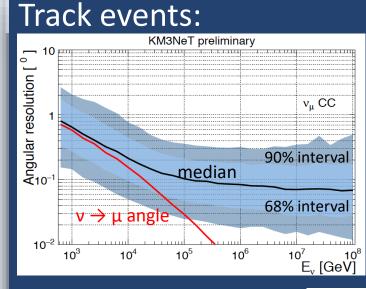
Search for point sources Measurement of the diffuse astrophysical flux


#### The KM3NeT /DOM:

- Directional information
- Isotropic ~4π field of view
- Hit time accuracy ~1ns
- Photocounting high noise rejection already at DOM level
- Large photocathode area

#### talk by R. Bruijn

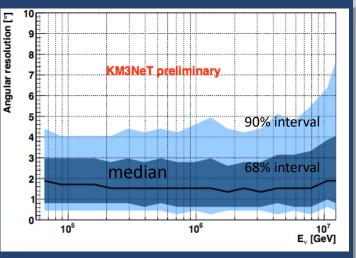
Building block: 115 DUs 18 DOMs / DU DOM spacing: ~36m DU spacing: ~90m Depth: ~3500 m



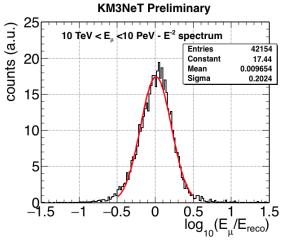


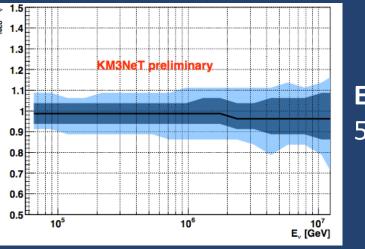

### ARCA angular and resolution

#### KM3NeT DOM and water properties: excellent angular resolution







Angular resolution:  $< 0.2^{\circ}$   $E_{v} \ge 10 \text{TeV}$  $< 0.1^{\circ}$   $E_{v} \ge 100 \text{TeV}$ 


#### Shower events:

Angular resolution:  $< 2^{\circ} E_{v} \ge 60 \text{TeV}$ 



Energy resolution: 20% in  $\log_{10}(E_{\mu})$ 





**Energy resolution:** 5%  $E_v \ge 60$ TeV

Plots for v<sub>e</sub> CC events

### High Energy Starting Events

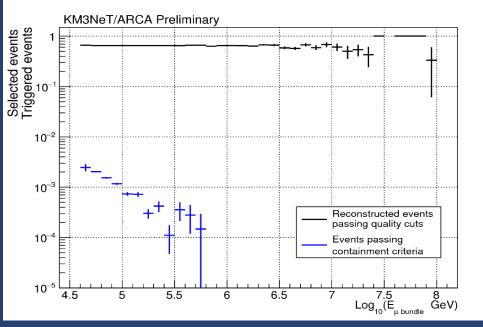
#### **Starting events:**

- Rejection of atmospheric muon background
- Rejection of atmospheric neutrinos accompanied by muons (self vetoes)
- More precise estimation of neutrino energy
- Isotropic (almost) field of view

## A High Energy Starting Events (HESE) analysis with KM3NeT/ARCA:

- Reject incoming muons to ARCA: Select a sample of starting track-like events.
- Perform track / shower differentiation: Select a sample of contained shower-like events.
- Combine the above samples: Form a HESE sample.
- Use this HESE sample to estimate the discovery potential of ARCA to an astrophysical flux.


A CARGER


### Starting tracks – vertex containment

#### **Starting track-like events:**

- Select well reconstructed track events.
- Select events having the reconstructed vertex inside a fiducial volume.

#### Efficiency of selected events with respect to all triggered events





#### Atmospheric muons

# Vertex containment:

ARCA

- High efficiency for neutrino events
- Powerful rejection on incoming atmospheric muons
- However, further rejection is needed

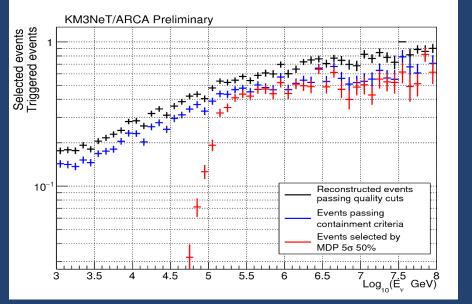
03/10/2018

VLVnT 2018, Dubna, K.Pikounis

### Starting tracks – final selection

#### Starting track-like events:

- Select well reconstructed events.
- Select events having the reconstructed vertex inside a fiducial volume.
- Extract topological event-based variables:
  - Identify incoming events.
  - Focus on high energy events.
- Use a BDT classifier for the final selection.
  - Signal: Truly contained starting track events with  $E_v > 30$  TeV.
  - Background: Through going tracks ( $v_{\mu}$  CC and atmospheric muon events).
- Final cuts on BDT output and  $E_{reco}$  with the Model Discovery Potential (MDP) technique.


#### Simulated events:

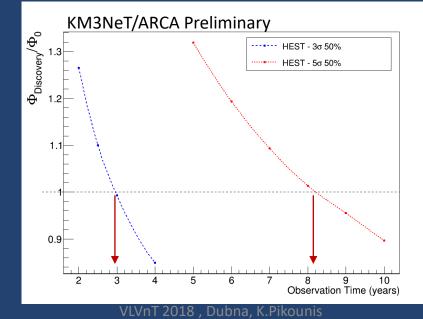
- Astrophysical flux per v flavour:  $\Phi_v = 2.3 \cdot 10^{-18} \left(\frac{E_v}{100 \text{ TeV}}\right)^{-2.5} \text{GeV}^{-1} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} \cdot \text{sr}^{-1}$
- Backgrounds:
  - atmospheric v fluxes: Honda (with knee correction) + Enberg
  - atmospheric muons (MUPAGE)

VLVnT 2018, Dubna, K.Pikounis

A REAL PARTY

### Starting tracks – final selection

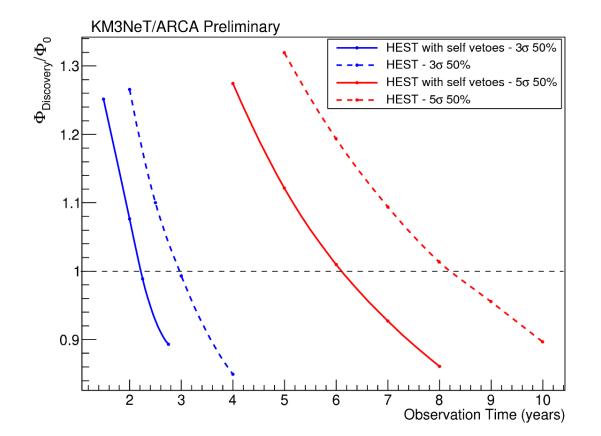



Cuts on BTD output and  $E_{reco}$  have excellent efficiency for high energy events.

Final signal sample: **94%** are true starting tracks

#### Final background sample:

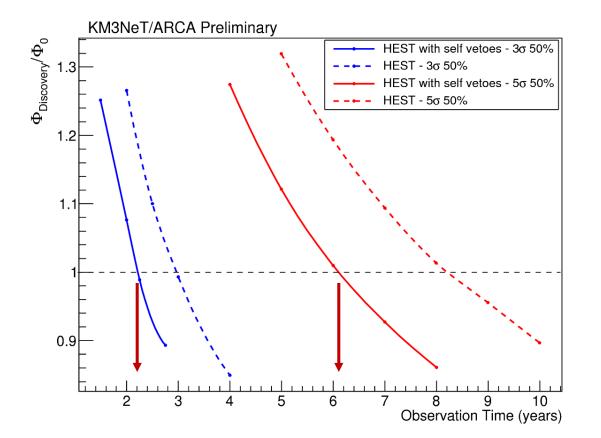
- 97% are true starting tracks
- 1% are true shower like events
- 2% are incoming atmospheric muons


Discovery of the astrophysical flux: 3σ in ~3 years 5σ in ~8 years using only high energy starting tracks.



### Starting tracks – Self veto studies

#### Self vetoes:

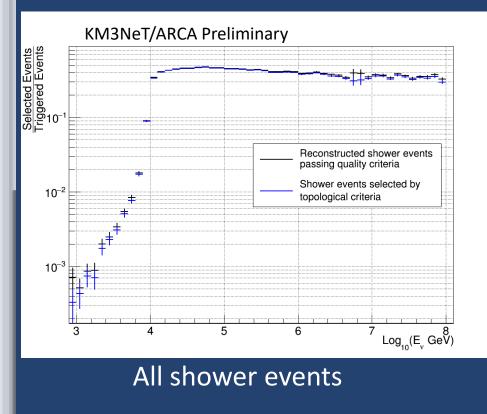

- Reject atmospheric neutrinos by identifying accompanying muons (created at the same atmospheric shower).
- Background samples:
  - atmospheric v with CORSIKA (downgoing), a fraction of which are accompanied by muons
  - atmospheric v Honda + Enberg (upgoing)
  - atmospheric muons (MUPAGE)



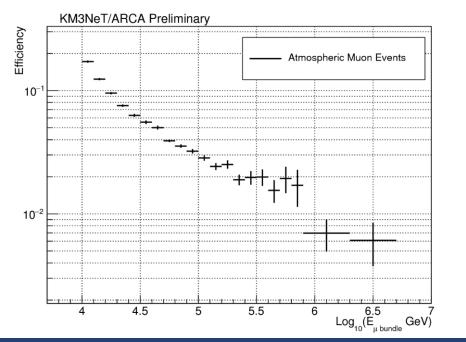
### Starting tracks – Self veto studies

#### Self vetoes:

- Rejected practically <u>ALL</u> atmospheric neutrinos accompanied by muons
- A reduction on the total atmospheric neutrino background of ~32%
- Leading to reduction in observation time needed for discovery ~25%
- Discovery <u>using only starting track events</u> 3σ in ~2.25 years
  5σ in ~6 years




### Contained Showers – First step


#### **Contained shower-like events:**

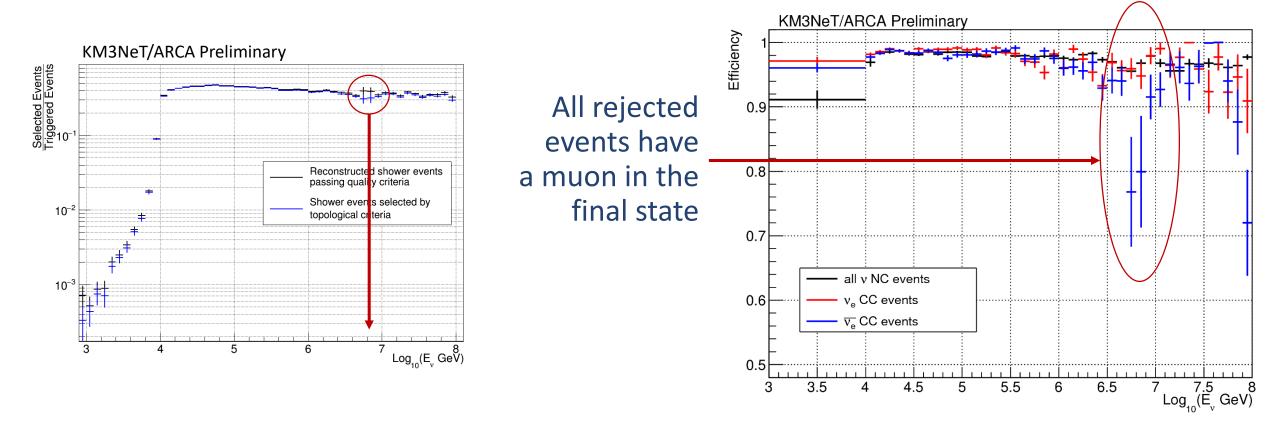
- Select well reconstructed shower events with the reco vtx inside the volume of ARCA.
- Apply a series of selection criteria designed to reject track events.

#### Efficiency of selected events with respect to all triggered events



#### Atmospheric muons




## Selection criteria:

- Excellent efficiency for shower events
- Powerful rejection on true track events
- However, further discriminating power is needed

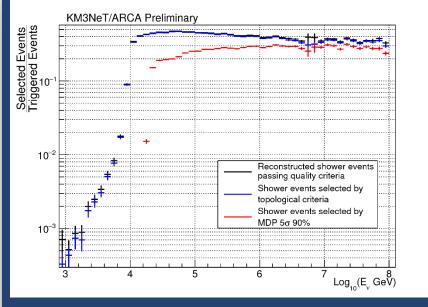
03/10/2018

### Contained Showers – First step

- For NC and  $v_e$  CC events, efficiency is > **95%**.
- For  $\overline{v_e}$  CC events , efficiency is > **95%** except for the Glashow resonance region. Muons from  $W^- \rightarrow \mu + \overline{v_{\mu}}$  are found and rejected.



### Contained Showers – final selection


#### **Contained shower-like events:**

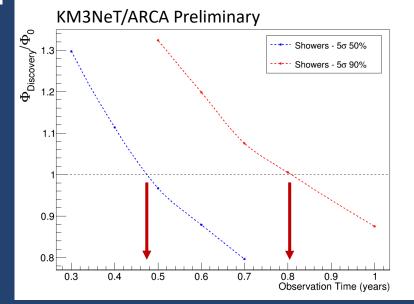
- Select well reconstructed shower events with the reco vtx inside the volume of ARCA.
- Apply a series of selection criteria designed to identify track events then remove them.
- Extract topological event based variables:
  - Identify shower events.
  - Identify track events.
- Use a BDT classifier for the final selection.
  - Signal: Truly contained shower events (NC events).
  - Background: atmospheric muon events.
- Final cuts on BDT output and  $E_{reco}$  with the MDP technique.

#### Simulated events:

- Astrophysical flux per v flavour:  $\Phi_v = 2.3 \cdot 10^{-18} \left(\frac{E_v}{100 \text{ TeV}}\right)^{-2.5} \text{GeV}^{-1} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} \cdot \text{sr}^{-1}$
- Backgrounds:
  - atmospheric v fluxes: Honda (with knee correction) + Enberg
  - atmospheric muons (MUPAGE)

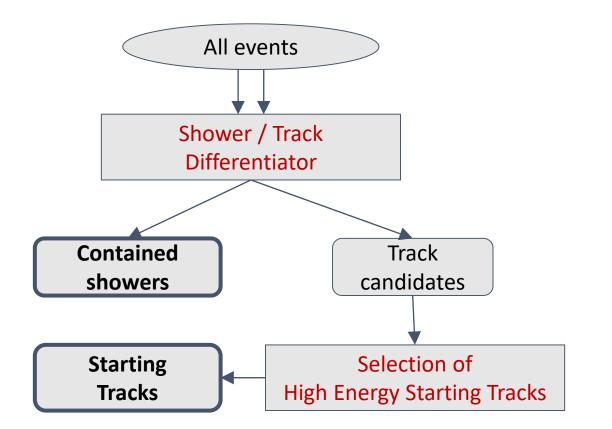
### Contained Showers – final selection




Cuts on BDT output and  $E_{reco}$  have high efficiency for high energy shower events.

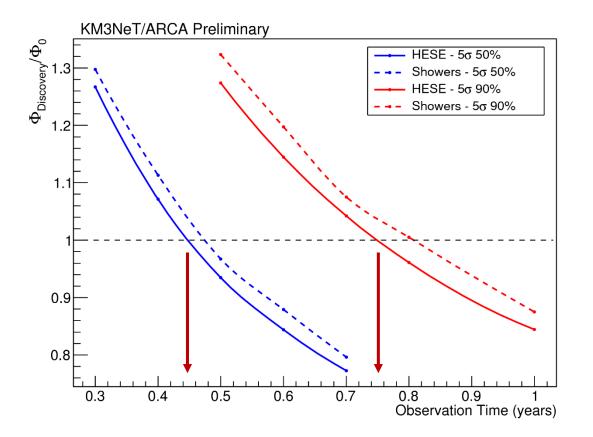
Final signal sample: **93%** are true contained shower-like events

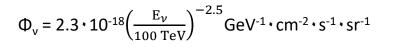
#### Final background sample:


- 88% are true contained shower-like events
- **12%** are incoming atmospheric muons

5σ Discovery of the astrophysical flux : 50% prob < 0.5 years 90% prob ~ 0.8 years using only high energy showers.







- Use shower/track differentiator to categorize each event as "contained showers" or as "track candidate" event.
- Select high energy starting tracks from the "track candidates" sample.
  - → High purity samples of starting tracks and contained sowers .
  - Use the MDP technique to select the final HESE sample.



### HESE – Discovery potential for ARCA

- 5σ discovery of the astrophysical flux: 50% probability < 0.5 years</li>
  90% probability < 0.8 years!</li>
- Final shower sample:
  - Signal: 94% correctly identified
  - Background: ~12% contamination of atmospheric muon events
- Final track sample:
  - Signal: 92% correctly identified
  - Background: ~7% contamination of atmospheric muon events







- High purity samples of high energy starting track and contained shower-like events were obtained using BDT based tools forming a HESE sample. This sample was used to perform an independent analysis for KM3NeT/ARCA discovery potential.
- Self veto effect has been explored. A <u>32% reduction</u> on the total atmospheric neutrino background is expected.
- Using HESE KM3NeT/ARCA is expected to make a **5σ discovery** of the astrophysical flux with **50% and 90%** probability in **less than 0.5 and 0.8 years,** respectively.
- Data from the first 2 ARCA strings are under analysis.

22000

### Real event as recorded by the 2 first deployed ARCA lines

